Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(17): eade1650, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669326

RESUMO

While the kinesin-2 motors KIF3A and KIF3B have essential roles in ciliogenesis and Hedgehog (HH) signal transduction, potential role(s) for another kinesin-2 motor, KIF17, in HH signaling have yet to be explored. Here, we investigated the contribution of KIF17 to HH-dependent cerebellar development, where Kif17 is expressed in both HH-producing Purkinje cells and HH-responding cerebellar granule neuron progenitors (CGNPs). Germline Kif17 deletion in mice results in cerebellar hypoplasia due to reduced CGNP proliferation, a consequence of decreased HH pathway activity mediated through decreased Sonic HH (SHH) protein. Notably, Purkinje cell-specific Kif17 deletion partially phenocopies Kif17 germline mutants. Unexpectedly, CGNP-specific Kif17 deletion results in the opposite phenotype-increased CGNP proliferation and HH target gene expression due to altered GLI transcription factor processing. Together, these data identify KIF17 as a key regulator of HH-dependent cerebellar development, with dual and opposing roles in HH-producing Purkinje cells and HH-responding CGNPs.


Assuntos
Cerebelo , Cerebelo/anormalidades , Proteínas Hedgehog , Cinesinas , Malformações do Sistema Nervoso , Células de Purkinje , Animais , Cinesinas/metabolismo , Cinesinas/genética , Cerebelo/metabolismo , Cerebelo/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Células de Purkinje/metabolismo , Transdução de Sinais , Proliferação de Células , Camundongos Knockout , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Deficiências do Desenvolvimento
2.
Genetics ; 223(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36655746

RESUMO

Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming.


Assuntos
Caenorhabditis elegans , Histonas , Camundongos , Animais , Histonas/genética , Histonas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ressonância de Plasmônio de Superfície , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Epigênese Genética
3.
Development ; 148(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33462111

RESUMO

Formation of a zygote is coupled with extensive epigenetic reprogramming to enable appropriate inheritance of histone methylation and prevent developmental delays. In Caenorhabditis elegans, this reprogramming is mediated by the H3K4me2 demethylase SPR-5 and the H3K9 methyltransferase, MET-2. In contrast, the H3K36 methyltransferase MES-4 maintains H3K36me2/3 at germline genes between generations to facilitate re-establishment of the germline. To determine whether the MES-4 germline inheritance pathway antagonizes spr-5; met-2 reprogramming, we examined the interaction between these two pathways. We found that the developmental delay of spr-5; met-2 mutant progeny is associated with ectopic H3K36me3 and the ectopic expression of MES-4-targeted germline genes in somatic tissues. Furthermore, the developmental delay is dependent upon MES-4 and the H3K4 methyltransferase, SET-2. We propose that MES-4 prevents crucial germline genes from being repressed by antagonizing maternal spr-5; met-2 reprogramming. Thus, the balance of inherited histone modifications is necessary to distinguish germline versus soma and prevent developmental delay.This article has an associated 'The people behind the papers' interview.


Assuntos
Caenorhabditis elegans/metabolismo , Carisoprodol/metabolismo , Células Germinativas/metabolismo , Histonas/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epigênese Genética , Epigenômica , Expressão Gênica , Técnicas de Silenciamento de Genes , Metilação , Processamento de Proteína Pós-Traducional
4.
Artigo em Inglês | MEDLINE | ID: mdl-36874387

RESUMO

Participation in research provides personal and professional benefits for undergraduates. However, some students face institutional barriers that prevent their entry into research, particularly those from underrepresented groups who may stand to gain the most from research experiences. Course-based undergraduate research experiences (CUREs) effectively scale research availability, but many only last for a single semester, which is rarely enough time for a novice to develop proficiency. To address these challenges, we present the Pipeline CURE, a framework that integrates a single research question throughout a biology curriculum. Students are introduced to the research system - in this implementation, C. elegans epigenetics research - with their first course in the major. After revisiting the research system in several subsequent courses, students can choose to participate in an upper-level research experience. In the Pipeline, students build resilience via repeated exposure to the same research system. Its iterative, curriculum-embedded approach is flexible enough to be implemented at a range of institutions using a variety of research questions. By uniting evidence-based teaching methods with ongoing scientific research, the Pipeline CURE provides a new model for overcoming barriers to participation in undergraduate research.

5.
Elife ; 52016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146892

RESUMO

The Hedgehog signaling pathway is part of the ancient developmental-evolutionary animal toolkit. Frequently co-opted to pattern new structures, the pathway is conserved among eumetazoans yet flexible and pleiotropic in its effects. The Hedgehog receptor, Patched, is transcriptionally activated by Hedgehog, providing essential negative feedback in all tissues. Our locus-wide dissections of the cis-regulatory landscapes of fly patched and mouse Ptch1 reveal abundant, diverse enhancers with stage- and tissue-specific expression patterns. The seemingly simple, constitutive Hedgehog response of patched/Ptch1 is driven by a complex regulatory architecture, with batteries of context-specific enhancers engaged in promoter-specific interactions to tune signaling individually in each tissue, without disturbing patterning elsewhere. This structure-one of the oldest cis-regulatory features discovered in animal genomes-explains how patched/Ptch1 can drive dramatic adaptations in animal morphology while maintaining its essential core function. It may also suggest a general model for the evolutionary flexibility of conserved regulators and pathways.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Drosophila , Camundongos
6.
J Cell Sci ; 128(5): 1034-50, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25588831

RESUMO

GLI transport to the primary cilium and nucleus is required for proper Hedgehog (HH) signaling; however, the mechanisms that mediate these trafficking events are poorly understood. Kinesin-2 motor proteins regulate ciliary transport of cargo, yet their role in GLI protein function remains unexplored. To examine a role for the heterotrimeric KIF3A-KIF3B-KAP3 kinesin-2 motor complex in regulating GLI activity, we performed a series of structure-function analyses using biochemical, cell signaling and in vivo approaches that define novel specific interactions between GLI proteins and two components of this complex, KAP3 and KIF3A. We find that all three mammalian GLI proteins interact with KAP3 and we map specific interaction sites in both proteins. Furthermore, we find that GLI proteins interact selectively with KIF3A, but not KIF3B, and that GLI interacts synergistically with KAP3 and KIF3A. Using a combination of cell signaling assays and chicken in ovo electroporation, we demonstrate that KAP3 interactions restrict GLI activator function but not GLI repressor function. These data suggest that GLI interactions with KIF3A-KIF3B-KAP3 complexes are essential for proper GLI transcriptional activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Galinhas , Chlorocebus aethiops , Proteínas do Citoesqueleto/genética , Humanos , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Complexos Multiproteicos/genética , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...